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Essentials

Abstract

Sarcoma (Src) family kinases (SFKs) have occupied a central place in platelet research
for over 40 years. Discovered by virologists and oncologists as the proto proto-
oncogene, Src tyrosine kinase spurred a phenomenal burst of research on reversible
tyrosine phosphorylation and signal transduction. For a time, platelets were adopted
as the model of choice for studying the biological functions of Src, owing to their
ease of isolation, high Src expression, and lack of a nucleus, only to be abandoned
due to challenges of culturing and manipulating using common molecular biology-
based techniques. For platelet biologists, SFKs have remained an important area of
investigation, initiating and amplifying signals from all major adhesion, activation, and
inhibitory receptors, including the integrin allbf3, the collagen receptor complex gly-
coprotein VI-Fc receptor y-chain, the G protein-coupled ADP receptor P2Y,, and
the inhibitory receptors platelet endothelial cell adhesion molecule-1 and Géb-B. The
vital roles of SFKs in platelets is highlighted by the severe phenotypes of null and
gain-of-function mutations in SFKs in mice and humans, and effects of pharmacologic
inhibitors on platelet activation, thrombosis, and hemostasis. The recent description
of critical regulators of SFKs in platelets, namely, C-terminal Src kinase (Csk), Csk ho-
mologous kinase (Chk), the receptor-type protein-tyrosine phosphatase receptor type
J(PTPRJ) helps explain some of the bleeding side effects of tyrosine kinase inhibitors
and are novel therapeutic targets for regulating the thrombotic and hemostatic ca-
pacity of platelets. Recent findings from Chk, Csk, and PTPRJ knockout mouse models
highlighted that SFKs are able to autoinhibit by phosphorylating their C-terminal ty-
rosine residues, providing fundamental insights into SFK autoregulation.

KEYWORDS
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e Sarcoma (Src) family kinases (SFKs) are essential for initiating and amplifying platelet activation.

e Reversible phosphorylation is a primary mode of regulation of SFK activity.

e The tyrosine kinases C-terminal Src kinase (Csk) and Csk homologous kinase and phosphatase protein-tyrosine phosphatase receptor

type J are critical regulators of SFKs.

e Autophosphorylation provides an additional level of SFK regulation.
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THE WINDING PAT#H OF DISCOVERY

F. Peyton Rous discovered the first

oncogenic virus, Rous Sarcoma (Src) Edwin 6. Krebs and Edmond H. Fischer

Virus (RSV) in chicken.! Nobel Prize in demonstrated reversible phosphorylation

Physiology or Medicine 1966. as a biological regulatory mechanism.?
Nobel Prize in Physiology or Medicine 1992.

& N | RSV was shown to be
J. Michael Bishop and Harold able to transform
E. Varmus discovered normal cells into cancer

viral-src (v-src) of RSV,* and cells in the lab of
v-src was shown to cellular-sre (c-src), the proto Hidesaburo Hanafusa.3
encode a protein proto-oncogene.>® Nobel Prize

kinase (v-Src) in the in Physiology or Medicine 1989.
lab of Raymond L. ~
Erikson.”?

Anthony R. Hunter and colleagues A
discovered that tyrosine residues
can be phosphorylated,!® and that
v-Src is a tyrosine kinase.!

-
Nicholas K. Tonks and colleagues
discovered the first protein- 5|gnql trqnsducﬂon
tyrosine phosphatase (PTP)-1B,!2
the recesfor-r')rype PTP CD148 Cellular'.funcflon
(DEP-1, PTPRT),2* and - ~ Drug discovery
demonstrated that CD45 is a Catherine J. Pallen and colleagues
receptor-type PTP;* all of which identified the first PTP (PTPRA) that
were later shown to regulate Src dephosphorylates the C-terminal
family kinases. inhibitory tyrosine residue of Src

\ / (Tyr530 in human Src), increasing its

catalytic activity.”®
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REVERSIBLE TYROSINE
PHOSPHORYLATION

AT I AbP  IC
VEVEVASR SO REVEVIIRS &
OH CH, o. N N CH, o. N N
— N

P
OH OH OH OH O p-TYl‘
\ / >
('profeiri ) Kinase - (protein)

Tyr phosphorylation can mediate
interactions with Src homology 2 (SH2)
domain-containing proteins, and alter
catalytic activity of enzymes.

Tyr

Kinases (Greek kinein, fo move) are
enzymes that catalyze the transfer of
phosphate groups (p) fo protein
substrates (tyrosine, Tyr).

Tyr
Tyr f y
{ : : . protein
Protein-Tyr kinases (PTKs) work in ! g

- conjunction with protein-Tyr
: Pr'OTe"‘ phosphatases (PTPs) to regulate the ———
‘ level of protein phosphorylation.

Tyr dephosphorylation is equally
important, preventing protein-protein
interactions and altering catalytic
activity of enzymes.
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PLATELET SRC FAMILY KINASES

Joan S. Brugge identified v-Src while in the lab of
Raymond L. Erikson,’ and her lab later showed that

H platelets express one of the highest levels of c-Src
Uman (Src) of any cell type.®

Src family kinases (SFKs)
include Src, Lyn, Fyn, Fgr,
Lck, Hck, Blk, Yes, of which
Src, Lyn and Fyn are highly
expressed in platelets.

Mouse &

Copy numbers and proportions of most
abundant SFKs expressed in human and
mouse platelets, determined by

proteomic-based approaches."”® Fgr-448 Fyn-4,145

(1%) (7%)
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SFikS ARE ESSENTIAL FOR
PLATELET ACTIVATION

SFKs are critical for initiating and amplifying signals from platelet adhesion
(aIIbp3, a2pl, GPIb-XI-V), activation (GPVI, CLEC-2, FcyRIIA, P2Y12) and
inhibitory (66b-B, PECAM-1) receptors.”

e N
Hiroshi Takayama and colleagues
showed physical and functional
associations of Lyn and Fyn with the
cytoplasmic tail of the collagen receptor

e N complex GPVI-Fc receptor y-chain,?
Sanford J. Shattil and colleagues showed | PECAM-1 subsequently confirmed and extended
that Src constitutively associates with the to other platelet surface receptors.?
p3 subunit of the integrin aIIbp3 via its _ )

SH3 domain, and is essential for initiating

outside-in signaling following fibrinogen
binding.20-2t

\.

G6b-B

CLEC-2

o2p1

Src family kinase (SFK), C-terminal Src kinase (Csk), spleen tyrosine kinase (Syk),
phospholipase Cy2 (PLCy2), phosphoinositide 3'-kinase (PI3K), adenylate cyclase (AC),
Src homology 2 domain-containing tyrosine phosphatase 1 and 2 (Shpl, Shp2),
immunoreceptor tyrosine-based activation motif O, immunoreceptor tyrosine-based

inhibition motif O
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STRUCTURE AND
PHOSPHO-REGULATION OF SRC

All SFKs share the same structural features. In addition, Lyn, Fyn, Lck and Yes are
palmitoylated, affecting membrane-localization.?®

. s N
Human c-Src SH2 domain identified by Anthony J. Pawson Two highly important
and colleagues binds phospho-tyrosine residues regulatory phosphory-
and mediates protein-protein interactions.?* lation sites are Tyr419

(activation loop) and
Tyr530 (C-terminal
inhibitory tail).25-2

SH4 membrane- SH3 PxxP type IL Type II helix linker region J
localization helix recognition mediates interaction with
domain domain SH3 domain

Tyr419

Myristoylation s | Tyr'530
heli
N2 sHa 1) sH3 H) SH2 )e—'xg Kinase J—'—c

Chicken v-Src

v-5rc lacks the C-terminal inhibitory tyrosine residue (Tyr527 in
chicken Src), resulting in higher activity and transforming ability. C

REVERSIBLE PHOSPHORYLATION OF TYR530 AND TYR419

The structure of Tyr530 In humans, the E527K Src variant affects the
phosphorqufed Src was solved by Tyr530 phosphorylation site leading to constitutively
the group of Michael J. Eck.2® active kinase, bleeding, thrombocytopenia,

. ’ myelofibrosis and bone pathologies.?®

Phosphorylation

+ Tyr530 by C-terminal Src kinase (Csk), Csk homologous kinase (Chk) and SFKs inhibits
SFK activity.30-32

* frans-autophosphorylation of Tyr419 by SFKs increases SFK activity.

Dephosphorylation

* p-Tyr530 by the receptor-type PTPs PTPRJ, CD45, PTPRA, PTPRE and non-receptor PTPs
PTP-1B, SHP1, SHP2 increases SFK activity.?”-333%

*+ p-Tyr419 by PTPRJ, CD45 decreases SFK activity.27.33.3¢
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KINASE/PHOSPHATASE REGULATORS
OF PLATELET SFKs

O
.oooocootf:’tootoo.‘..‘.. 000..‘
s @ )

SFK

Auto-
activator

Dominant
inhibitor

PTP-1B% SHP138 SHP2% PTPRA!5 PTPRE*
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THE SFis EQUILIBRIVM IN PLATELETS

SFKs are tightly regulated in platelets by the interplay of Csk, Chk, SFKs and PTPRJ .36 4142
Resting platelets contain basal SFK activity, allowing them to rapidly respond to vascular
injury. Why this does not lead to unwanted signalling is partially explained by
accessibility of downstream substrates.

(In'rr'amolecular interactions, between Dephosphorylation of Trans-autophosphorylation
the SH3 and linker region, and SH2 and the C-terminal p-Y by of the activation loop Y
C-terminal p-tyrosine (p-Y) locks the PTPRJ activates the locks the SFK in an active

\SFK in an inactive conformation.* 44 SFK. conformation. )

000000000000000000 .......O............O' ‘...........O.......O... 900000000000000000000000

i

00000000000000007/600000000000000000007/0069000000000000000000000/ ......O...... 0000000000000

sH3 Y (P £ o
w w
PTPRJ == SFK
‘ > | & > O
Yy XI X
P
y Csk PTPRJ —
Chk
_ SFK SFK 2 g
inactive &l y al y
” P Dephosphorylation of P
| the activation loop Y by
Phosphorylation of the Y PTPRJ returns the SFK Y
C-terminal Y by Csk, Chk and to a less active state.*
SFKs inhibits SFKs.3-42 SFK SFK
active fully active

CONCOMITANT ACTIVATION AND INHIBITION

"™ GPVI G6b-B
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Activation SFK active Inhibition

ITAM ITIM ITSM

Immunoreceptor Tyrosine-based Activation Motif Immunoreceptor Tyrosine-based Inhibition Motif ~ Immunoreceptor Tyrosine-based Switch Motif

(YxxL/Ix[6-8]YxxL/I) (I/V/LxYxxL/V) (TxYxxV/I)
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PATHOLOGICAL CONSEQUENCES OF
SFi DISEQUILIBRIVM

Control

(A) Platelet count (B) Tail bleeding *
_ 1250- 10+ 5 % b
= *
S o2’ Q o2l
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= il A g ** S o - && L 2
° = v
5 250 '&‘* < Koo A .
55 “AA‘ 00 oOo A —_—
ol — 4 : . 04 A A A S—
Control Csk PTPRT Csk: Control Csk PTPRT Csk:
KO KO PTPRT KO KO PTPRT
DKO DKO
(C) Laser-induced injury thrombosis assay
PTPRJ KO

Csk;PTPRJ DKO

o e
i
[ M

Bleeding and thrombotic complications in Pf4-Cre* Csk/fI:PTPRIT/f! conditional double
knockout (DKO) mice, despite normal platelet counts. (A-C) Platelet count in control, Csk,
PTPRJ and Csk:PTPRJ conditional KO and DKO mouse models (platelets green; scale bar: 10 mm).3
This research was originally published in Blood.*®* ®American Society of Hematology.

NEGATIVE FEEDBACIK CULMINATES IN EXHAUSTED PLATELET

Resting Activated Post-activated Exhausted
platelets platelets platelets platelets
Proteolysis
L oy
TXA2 e c

Thrombin

Internalization

|

T SFK activity

De novo
synthesis
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AUTOPHOSPHORYLATION OF
SFis INHIBITORY TYR

385
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750+
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Platelet count (x10%/ml)
(4]
(=)
i <

Control Chk KO DKO TKO

Csk and Chk were the only known kinases Control L
that phosphorylate the C-terminal + - - - 4+ - - - DMSO
inhibitory Tyr of SFKs (Src Tyr530).27454¢ & B - - + - - 50nMDasatinib
- - 4+ - - - + - 10uMPP1

Although Src had been shown to trans- - - - + - - - + 3uMPRT-060318
autophosphorylate Tyr530 in vitro,*-4
this had not been corroborated /n vivo. I - wem | Src p-Tyr530
We recently demonstrated that a
significant proportion of Src and Fyn are T L | Fyn p-Tyr531
phosphorylated on their C-terminal Tyr's
(Src Tyrb30, Fyn Tyrb531) in
Chk;Csk:PTPRJ triple knockout (TKO)
platelets. I s S e B R e e | GAPDH

1250+ \

The SFK inhibitors dasatinib and PP1
reduced C-terminal Tyr phosphorylation in
control and TKO platelets, whereas the Syk
inhibitor PRT-060318 had no effect.*

Severe thrombocytopenia in Chk 'Csk
double KO (DKO) mice was partially
rescued in TKO mice.*

This research was originally published in Blood.*2
©American Society of Hematology.
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TARGETING SFikS AND
THEIR REGULATORS

Dasatinib, bosutinib, ponatinib,
& vandetanib are orally active tyrosine
’ kinase inhibitors (TKIs) with off-target

effects on SFKs, used in the treatment

& of various cancers.> %2 Ibrutinib is a Btk
& inhibitor with of f-target effects on Csk,
also used in the treatment of cancer.>?

All have bleeding side effects.

SFKs are essential for cell
proliferation, adhesion,
migration, survival,
angiogenesis and invasion,
and are targeted ina
variety of pathologies,
including cancer,
autoimmunity and
cardiovascular
disease.% !

CIRCUMVENTING BLEEDING SIDE EFFECTS

1)) ()]
% E
-
PTPRJ R SFK =
p T > |5
Csk PTPRJ
Chk
. SFK SFK = =
inactive gLy 2Ly ;E
y:r inhibitors? v
dasatinib SFK SFK
bosutinib ~ active fully active
ponatinib
& & vandetanib
ibrutinib Inhibiting PTPRJ provides an indirect way of
reducing SFK activity, with potentially fewer

& bleeding side effects than direct acting SFK
inhibitors.3¢

Bleeding side-effects of TKIs with off-target
effects on SFKs, Csk and Chk.>* % Inhibitors
targeting specific SFKs (Src, Lyn, Fyn) may
circumvent this issue.
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GULATION

Membrane localization
* lipid rafts
* nonlipid rafts

Phophorylation
« tyrosine (Csk, Chk, PTPs)
* serine (PKC, Ser'/Thr‘PPs)

Tyr419
type II Tyr530
helix
N )5H4H) SH3 H) SH2 )—0 Kinase C

Src family kinases

Degradation
+ ubiquitination

inactive

Protein interactions
- compartmentalization

* unclamping N
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